

Single-Mode 155Mbps Single Fiber Bi-Directional SC/FC/ST Transceiver RoHS6 Compliant

Features

- Support 155Mbps data links
- Industry Standard 1 x 9 Footprint
- A type: 1310nmFP Tx/1550nmRx
 B type: 1550nmFP Tx/1310nmRx
- 20Km with 9/125um SMF at Least
- 3.3V or 5V single power supply
- PECL signal input and output *note1
- Signal detect indicator (PECL version) *note1
- Wave Solderable and Aqueous Washable with process plug inserted
- Class 1 FDA and IEC60825-1 laser safety compliant
- Operating Case Temperature

Standard: 0°C ~+70°C

Ordering information

Industrial:-40℃~+85℃

Applications

- ATM 155 Mbps Links
- SONET/SDH Equipment Interconnect
- Switch to Switch Interface
- Digital video transmission system

5							
Part No.	Input/ Output	SD	Distance	Wavelength	Voltage	Interface	Temp.
SNR-TRS-19-WDM100-20-1310 ^{*note2} SNR-TRS-19-WDM100-20-1550 ^{*note2}	DC	PECL	20Km	1310nm	3.3V/ 5V	SC	Standard
	DC	PECL	20Km	1550nm	3.3V/ 5V	SC	Standard

*Other ordering information in detail refers to the denominate rule on next page.

Note1: 5V for PECL or TTL, 3.3V for LVPECL or LVTTL

Note2: Standard version


Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000 V)
Electrostatic Discharge to the enclosure	EN 55024:1998+A1+A2 IEC-61000-4-2 GR-1089-CORE	Compliant with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compliant with standards Noise frequency range: 30 MHz to 6 GHz. Good system EMI design practice required to achieve Class B margins. System margins are dependent on customer host board and chassis design.
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compliant with standards. 1kHz sine-wave, 80% AM, from 80 MHz to 1 GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I laser product. TüV Certificate No. 50135086
Component Recognition	UL and CUL EN60950-1:2006	UL file E317337 TüV Certificate No. 50135086 (CB scheme)
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standards ^{*note3}

Note3: For update of the equipments and strict control of raw materials, SNR has the ability to supply the customized products since Jan 1st, 2007, which meet the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union.

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for SNR's transceivers, because SNR's transceivers use glass, which may contain Pb, for optical components such as lenses, isolators, and other electronic components.

Interface information

The Signal Detect (SD, active high), Normal optical input of receiver represents to a logic "1" level, which means asserted. The following versions are available:

1. AC/AC Transceiver

Tx and Rx are AC coupling. Tx has differential 100Ω load.

2. DC/DC Transceiver

Standard PECL inputs and outputs, Tx and Rx are DC coupling.

Product Description

The SNR-TRS-19-WDM100 series is high performance module for OC-3/STM-1 single fiber communication by using 1310nm/1550nm transmitter and 1550nm/1310nm receiver.

The transmitter section uses a multiple quantum well A/B type laser and is a class 1 laser compliant according to International Safety Standard IEC 60825. The receiver section uses an integrated B/A type detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC. A PECL logic interface simplifies interface to the external circuitry.

Absolute Maximum Ratings

Parameter	Symbol		Min.	Max.	Unit
Storage Temperature	Ts		-40	+85	C
Supply Voltage	VCC	5V	-0.5	7.0	V
Supply Voltage		3.3V	-0.5	5.5	V
Operating Relative Humidity		-		95	%
Soldering Conditions Temp/Time				260/10	°C/s

*Exceeding any one of these values may destroy the device immediately.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	т	0		+70	٥C
Operating Case Temperature	T _A	-40		+85	
Dower Supply Voltage	VCC	4.75	5	5.25	N/
Power Supply Voltage		3.15	3.3	3.45	V
Power Supply Current ^{*(note4)}	lcc			300	mA
Data Rate			155		Mbps

Note4: Maximum current is specified at Vcc equaling to Maximum @ maximum temperature.

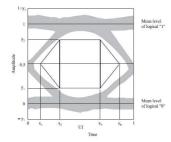
Optical and Electrical Characteristic

(SNR-TRS-19-WDM100-1310, FP and PIN)

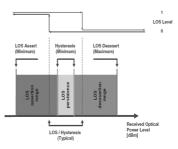
Parameter	Symbol	Min.	Typical	Max.	Unit		
Transmitter							
Centre Wavelength	λ _C	1260	1310	1360	nm		
Spectral Width	Δλ			4	nm		
Average Output Power* ^(note5)	Pout	-14		-8	dBm		
Extinction Ratio	ER	9			dB		
Rise/Fall Time (20%80%)	tr/tf			2	ns		
Relative Intensity Noise	RIN			-117	dB/Hz		
Total Jitter	TJ			1	ns		
Data Input Swing Differential	V _{in}	400		2000	mV		
Input Differential Impedance	Z _{in}	90	100	110	Ω		
Input High Voltage	V _H	-1165		-880	mV		
Input Low Voltage	VL	-1810		-1475	mV		
Eye Diagram IUT-T G.957 Compliant* ^(note7)							
Data Input	PECL ^{*(note1)}						
	Recei	ver					
Receiver Rate		1	55		Mbps		
Input center wavelength	λ _c	1480	1550	1580	nm		
Receiver Sensitivity*(note6)	Pmin			-34	dBm		
Receiver Overload	Pmax	-5			dBm		
SD Assert	SDA			-35	dBm		
SD De-Assert	SDD	-45			dBm		
SD Hysteresis ^{*(note8)}		0.5			dB		
Output High Voltage	V _H	-1165		-880	mV		
Output Low Voltage	VL	-1810		-1475	mV		
SD Voltage(TTL-H) *(note1)	V _H	2			V		
SD Voltage (TTL-L) *(note1)	VL			0.8	V		
SD Voltage(PECL-H) *(note1)	V _H	-1.1		-0.74	V		
SD Voltage (PECL-L) *(note1)	VL	V _L -2.0 -1.58					
Data Output PECL ^{*(note1)}							

(SNR-TRS-19-WDM100-1550 Series, FP and PIN)

Parameter	Symbol	Min.	Typical	Max.	Unit			
Transmitter								
Centre Wavelength(0~70□)	λ_{C}	1480	1550	1580	nm			
Spectral Width	Δλ			4	nm			
Average Output Power* ^(note5)	P _{out}	-14		-8	dBm			
Extinction Ratio	ER	9			dB			
Rise/Fall Time (20%80%)	tr/tf			2	ns			
Relative Intensity Noise	RIN			-117	dB/Hz			
Total Jitter	TJ			1	ns			



Data Input Swing Differential	V_{in}	400		2000	mV
Input Differential Impedance	Z _{in}	90	90 100		Ω
Input High Voltage	V _H	-1165		-880	mV
Input Low Voltage	VL	-1810		-1475	mV
Eye Diagram		IUT-T G	6.957 Comp		
Data Input			PECL ^{*(note}	1)	
	Rece	iver			
Receiver Rate		1:	55		Mbps
Input center wavelength	λ _C	1260		1360	nm
Receiver Sensitivity*(note6)	Pmin			-34	dBm
Receiver Overload	Pmax	-5			dBm
SD Assert	SDA			-35	dBm
SD De-Assert	SDD	-45			dBm
SD Hysteresis ^{*(note8)}		0.5			dB
Output High Voltage	V _H	-1165		-880	mV
Output Low Voltage	VL	-1810		-1475	mV
SD Voltage(TTL-H) *(note1)	V _H	2			V
SD Voltage (TTL-L) *(note1)	VL			0.8	V
SD Voltage(PECL-H) *(note1)	V _H	-1.1		-0.74	V
SD Voltage (PECL-L) *(note1)	V _L -2.0 -1.58				V
Data Output	PECL ^{*(note1)}				

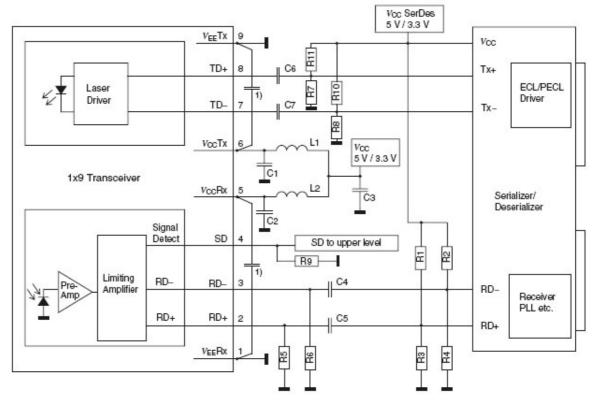

Note5: The optical power is launched into 9/125um SMF.

Note6: Minimum average optical power at which the BER is less than 1E-12 or lower. Measured with a 2²³-1 NRZ PRBS and ER=9 dB.

Note7: Eye pattern mask

Note8: LOS Hysteresis

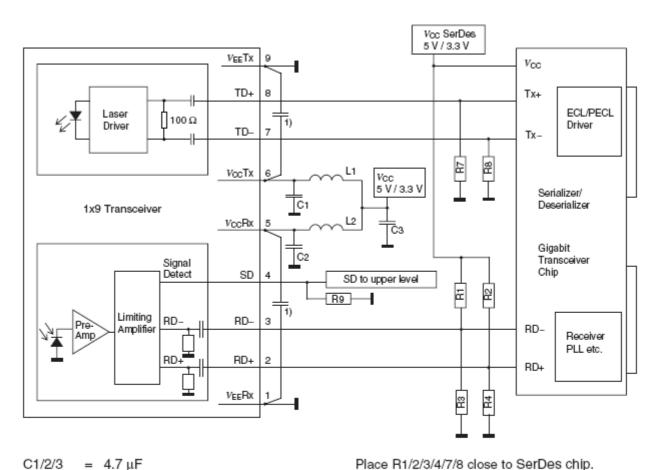
Pin Description


Pin	Name	Level	Description
1	Veer		Receiver Signal Ground, connect to receiver signal ground plane
	1001		directly
2	RD+	PECL ^{*(note1)}	Receiver data out
3	RD-	PECL ^{*(note1)}	Inverted receiver data out
			Signal Detect, TTL (Load resistor > $4.7K\Omega$) or PECL output, Normal
4	SD	PECL ^{*(note1)}	optical input levels to the receiver result in a logic "1" output,
4	30	FECL	asserted. Low input levels to the receiver result in a fault condition
			indicated by a logic "0" output, de-asserted.
			Receiver Power Supply, provide +5V (+3.3V) the recommended
5	Vccr		receiver power supply filter circuit. Locate the power filter circuit as
			close as possible to the Vccr pin
			Transmitter Power Supply, provide +5V DC(+3.3V) via the
6	Vcct		recommended transmitter power supply filter circuit. Locate the
			power filter circuit as close as possible to the Vcct pin
7	TD-	PECL ^{*(note1)}	Inverted transmitter Data in
8	TD+	PECL ^{*(note1)}	Transmitter Data in
9	Veet		Transmitter Signal Ground, connect to the transmitter signal ground
9	Veet		planed directly

Pin Definitions

○ 1 Veer	0
O 2 RD+	N/C
O 3 RD-	
O 4 SD	TOP VIEW
O 5 Veer	TRX TRX
○ 6 Veet	
O 7 TD-	
O 8 TD+	N/C
○ 9 Veet	N/C
	0
1	

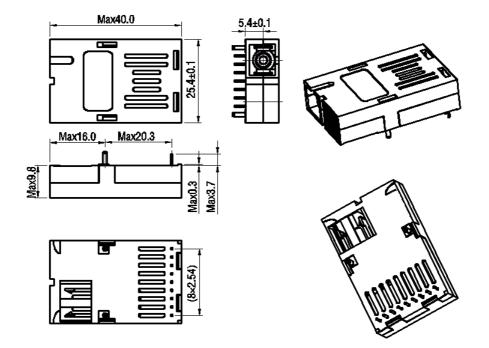
Recommended Circuit



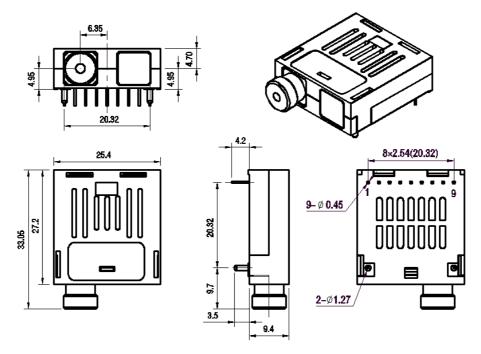
C1/2/3	=	4.7 μF
C4/5/6/7	=	100 nF
L1/2	=	1 μH
R5/6	=	270 Ω (5 V)
	=	150 Ω (3.3 V)
R7/8	=	127 Ω (5 V)
	=	82 Ω (3.3 V)
(depends	on	SerDes chip used)
R9	=	510 Ω (5 V)
	=	270 Ω (3.3 V)

 $\begin{array}{rcl} \text{R10/11} &=& 82 \ \Omega \ (5 \ \text{V}) \\ &=& 127 \ \Omega \ (3.3 \ \text{V}) \\ (\text{depends on SerDes chip used}) \\ \text{Place R1/2/3/4 close to SerDes chip, depends on SerDes chip used.} \\ \text{Place R5/6/7/8/10/11 close to 1x9 transceiver.} \end{array}$

DC Coupling inside

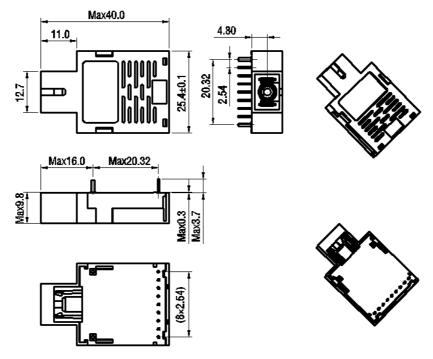

- $\begin{array}{rcl} \text{C1/2/3} &=& 4.7 \ \mu\text{F} \\ \text{L1/2} &=& 1 \ \mu\text{H} \\ \text{R1/2/3/4} &=& \text{Depends on SerDes chip used} \\ \text{R7/8} &=& \text{Biasing (depends on SerDes chip)} \\ \text{R9} &=& \text{open (5 V/3.3 V TTL)} \\ &=& 510 \ \Omega \ (\text{5 V PECL}) \end{array}$
 - = 270 Ω (3.3 V PECL)

AC Coupling inside


Place R5/6 close to 1x9 transceiver.

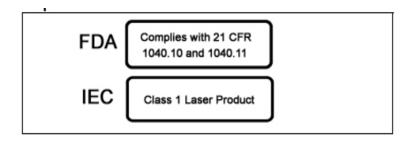
Package outline (Unit: mm)

SC receptacle side output


FC receptacle

NAG LLC Page 9 of 12

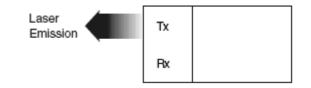
SNR-TRS-19-WDM100-20



20 dB Power Budget 1x9 100M WDM Transceiver

SC receptacle middle output

Class 1 Labels



Laser Emission Data

Wavelength	1310nm
Total output power (as defined by FDA: 7 mm aperture at 20 cm distance)	< 0.195mW
Total output power (as defined by IEC: 7 mm aperture at 10 cm distance)	< 15.6mW
Beam divergence	12.5°
Wavelength	1550nm
Total output power (as defined by FDA: 7 mm aperture at 20 cm distance)	<0.79mW
Total output power (as defined by IEC: 7 mm aperture at 10 cm distance)	<10mW
Beam divergence	12.5°

Laser Emission

Notice:

SNR reserves the right to make changes or discontinue any product or service identified in this publication, without notice, in order to improve design and/or performance. Applications that are described herein for any of the products are for illustrative purposes only. SNR makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

GUARANTEE:

CONTACT:

Addres: Building 118, Vonsovskogo Street 1, Yekaterinburg, Russia Tel: +7(343) 379-98-38 Fax: +7(343) 379-98-38

E-mail: info@nag.ru Online shop: http://shop.nag.ru